超声波清洗技术早出现于20世纪30年代早期,当时,位于美国新泽西州的美国无线电公司的一个实验室中的技术人员尝试用自制的简陋超声波清洗系统清洗某些物体,但试验未获成功。在此基础上,超声波清洗技术在20世纪50年代有了很大的发展,当时使用的超声波工作频率在20~ 40 kHz之间。该范围内的超声波被应用在数千种不同的工作场合下,其中许多是别的清洗手段不能很好发挥作用的场合。超声波可以对工件施加非常巨大的能量,尤其适用于清除牢固地附着在基底上的污垢。然而在某些情况下,超声波强大的能量也会损伤粘有污垢而性质脆弱的基底材料。在过去的十几年中,超声波领域中出现了一些技术革新,提高了清除敏感基底上的污物的安全系数。在此期间,超声波技术,特别是中高频超声波清洗技术有了新的发展,并成为行业的亮点。
近年来,人们发现用兆声波(根据超声波的频率不同,把40 kHz及其以下的称为常规或低频超声波,把1 000 kHz以上的称为高频超声波,又称兆频超声波,简称兆声波)清洗可以去除掉半导体材料表面上的超细污垢微粒,并且不会损伤基底材料的表面。目前这项技术已经得到了很快的普及。
超声波清洗机的构成
超声波清洗机由以下几部分组成:
1)超声波系统:包括换能器和超声波发生器。
(1)换能器:换能器采用特种耐高温、耐振动、高粘度的树脂胶辅以特殊的方法加以固定,脱落,且可耐受100℃~150℃的高温。
(2)超声波发生器:大功率超声波发生器可由超音频IGBT电力电子器件为主要元件构成,该种超声波发生器电路***,结构完整,辅以灵敏可靠的集成控制系统。各种超声波发生器可独立工作,亦可多组并联使用,以完成大规模清洗工程。
2)加热及温度控制系统。加热器通常采用不锈钢管材制成,可耐酸碱。加热的目的是将清洗剂加热以增加清洗机的洗涤效果。温度自动控制,可在适当范围内随意调整。
3)清洗槽:清洗槽一般采用不锈钢经弧焊焊制而成,槽体上设置有排渣检修口、保温隔声层等,要保证水位至少应高出换能器盒200 mm以上。
4)槽液循环过滤系统。在该系统中设有过滤器,对槽液进行动态过滤,以维持槽液的清洁度。当工件出槽,经过过滤的液体流经槽体上部的喷淋环节对工件进行一次冲洗,以便冲掉工件出槽时表面粘附的油污,以避免其对下道槽液造成污染。
5)输送系统:根据被清洗工件的形状、体积、批量等确定超声波清洗机的输送方式及控制方式。
6)喷淋漂洗系统:根据被清洗工件的表面状况,有的清洗机配备喷淋漂洗工序,将超声波清洗和 喷 淋 清 洗 有机地结合起来。
7)烘干系统:根据被清洗工件的状况,有的清洗机配备烘干系统,烘干系统主要由加热器、风机、吹风喷嘴等组成温度自动控制。

超声波清洗的作用机理主要有以下几个方面:因空化泡破灭时产生强大的冲击波,污垢层的一部分在冲击波作用下被剥离下来、分散、乳化、脱落。因为空化现象产生的气泡,由冲击形成的污垢层与表层间的间隙和空隙渗透,由于这种小气泡和声压同步膨胀,收缩,象剥皮一样的物理力反复作用于污垢层,污垢层一层层被剥离,气泡继续向里渗透,直到污垢层被完全剥离。这是空化二次效应。超声波清洗中清洗液超声振动对污垢的冲击。超声加速化学清洗剂(RT-808超声波清洗剂)对污垢的溶解过程,化学力与物理力相结合,加速清洗过程。
清洗介质:采用超声波清洗,一般两类清洗剂:化学溶剂、水基清洗剂(RT-808超声波清洗剂)等。 清洗介质的化学作用,可以加速超声波清洗效果,超声波清洗是物理作用,两种作用相结合,以对物件进行充分、***的清洗。
功率密度:功率密度=发射功率(W)/发射面积(cm2)通常≥0.3W/cm2,超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。但对于精密的、表面光洁度甚高的物件,采用长时间的高功率密度清洗会对物件表面产生“空化”腐蚀。
超声波频率:超声波频率越低,在液体中产生的空化越容易,产生的力度大,作用也越强,适用于工件(粗、脏)初洗。频率高则超声波方向性强,适用于精细的物件清洗。
清洗温度:一般来说,超声波在30℃-40℃时的空化效果好。清洗剂则温度越高,作用越显著。通常实际应用超声波时,采用50℃-70℃的工作温度。